Serveur d'exploration sur la Covid et les espaces publics

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.

Identifieur interne : 000179 ( Main/Exploration ); précédent : 000178; suivant : 000180

Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.

Auteurs : Rajesh K. Bhagat [Royaume-Uni] ; P F Linden [Royaume-Uni]

Source :

RBID : pubmed:33047029

Abstract

The SARS-CoV-2 virus has so far infected more than 31 million people around the world, and its impact is being felt by all. Patients with diseases such as COVID-19 should ideally be treated in negative pressure isolation rooms. However, due to the overwhelming demand for hospital beds, patients have been treated in general wards, hospital corridors and makeshift hospitals. Adequate building ventilation in hospitals and public spaces is a crucial factor to contain the disease (Escombe et al. 2007 PLoS Med.4; Escombe et al. 2019 BMC Infect. Dis.19, 88 (doi:10.1186/s12879-019-3717-9); Morawska & Milton 2020 Clin. Infect. Dis. ciaa939. (doi:10.1093/cid/ciaa939)), to exit lockdown safely, and reduce the chance of subsequent waves of outbreaks. A recently reported air-conditioner-induced COVID-19 outbreak caused by an asymptomatic patient, in a restaurant in Guangzhou, China (Lu et al. 2020 Emerg. Infect. Dis.26) exposes our vulnerability to future outbreaks linked to ventilation in public spaces. We argue that displacement ventilation (either mechanical or natural ventilation), where air intakes are at low level and extracts are at high level, is a viable alternative to negative pressure isolation rooms, which are often not available on site in hospital wards and makeshift hospitals. Displacement ventilation produces negative pressure at the occupant level, which draws fresh air from outdoors, and positive pressure near the ceiling, which expels the hot and contaminated air out. We acknowledge that, in both developed and developing countries, many modern large structures lack the openings required for natural ventilation. This lack of openings can be supplemented by installing extract fans. We have also discussed and addressed the issue of the 'lock-up effect'. We provide guidelines for such mechanically assisted, naturally ventilated makeshift hospitals.

DOI: 10.1098/rsos.200680
PubMed: 33047029
PubMed Central: PMC7540764


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.</title>
<author>
<name sortKey="Bhagat, Rajesh K" sort="Bhagat, Rajesh K" uniqKey="Bhagat R" first="Rajesh K" last="Bhagat">Rajesh K. Bhagat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linden, P F" sort="Linden, P F" uniqKey="Linden P" first="P F" last="Linden">P F Linden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33047029</idno>
<idno type="pmid">33047029</idno>
<idno type="doi">10.1098/rsos.200680</idno>
<idno type="pmc">PMC7540764</idno>
<idno type="wicri:Area/Main/Corpus">000081</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000081</idno>
<idno type="wicri:Area/Main/Curation">000081</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000081</idno>
<idno type="wicri:Area/Main/Exploration">000081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.</title>
<author>
<name sortKey="Bhagat, Rajesh K" sort="Bhagat, Rajesh K" uniqKey="Bhagat R" first="Rajesh K" last="Bhagat">Rajesh K. Bhagat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linden, P F" sort="Linden, P F" uniqKey="Linden P" first="P F" last="Linden">P F Linden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Royal Society open science</title>
<idno type="ISSN">2054-5703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS-CoV-2 virus has so far infected more than 31 million people around the world, and its impact is being felt by all. Patients with diseases such as COVID-19 should ideally be treated in negative pressure isolation rooms. However, due to the overwhelming demand for hospital beds, patients have been treated in general wards, hospital corridors and makeshift hospitals. Adequate building ventilation in hospitals and public spaces is a crucial factor to contain the disease (Escombe
<i>et al.</i>
2007
<i>PLoS Med.</i>
<b>4</b>
; Escombe
<i>et al.</i>
2019
<i>BMC Infect. Dis.</i>
<b>19</b>
, 88 (doi:10.1186/s12879-019-3717-9); Morawska & Milton 2020
<i>Clin. Infect. Dis</i>
. ciaa939. (doi:10.1093/cid/ciaa939)), to exit lockdown safely, and reduce the chance of subsequent waves of outbreaks. A recently reported air-conditioner-induced COVID-19 outbreak caused by an asymptomatic patient, in a restaurant in Guangzhou, China (Lu
<i>et al.</i>
2020
<i>Emerg. Infect. Dis.</i>
<b>26</b>
) exposes our vulnerability to future outbreaks linked to ventilation in public spaces. We argue that
<i>displacement ventilation</i>
(either mechanical or natural ventilation), where air intakes are at low level and extracts are at high level, is a viable alternative to negative pressure isolation rooms, which are often not available on site in hospital wards and makeshift hospitals. Displacement ventilation produces negative pressure at the occupant level, which draws fresh air from outdoors, and positive pressure near the ceiling, which expels the hot and contaminated air out. We acknowledge that, in both developed and developing countries, many modern large structures lack the openings required for natural ventilation. This lack of openings can be supplemented by installing extract fans. We have also discussed and addressed the issue of the 'lock-up effect'. We provide guidelines for such mechanically assisted, naturally ventilated makeshift hospitals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33047029</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2054-5703</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Royal Society open science</Title>
<ISOAbbreviation>R Soc Open Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>200680</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsos.200680</ELocationID>
<Abstract>
<AbstractText>The SARS-CoV-2 virus has so far infected more than 31 million people around the world, and its impact is being felt by all. Patients with diseases such as COVID-19 should ideally be treated in negative pressure isolation rooms. However, due to the overwhelming demand for hospital beds, patients have been treated in general wards, hospital corridors and makeshift hospitals. Adequate building ventilation in hospitals and public spaces is a crucial factor to contain the disease (Escombe
<i>et al.</i>
2007
<i>PLoS Med.</i>
<b>4</b>
; Escombe
<i>et al.</i>
2019
<i>BMC Infect. Dis.</i>
<b>19</b>
, 88 (doi:10.1186/s12879-019-3717-9); Morawska & Milton 2020
<i>Clin. Infect. Dis</i>
. ciaa939. (doi:10.1093/cid/ciaa939)), to exit lockdown safely, and reduce the chance of subsequent waves of outbreaks. A recently reported air-conditioner-induced COVID-19 outbreak caused by an asymptomatic patient, in a restaurant in Guangzhou, China (Lu
<i>et al.</i>
2020
<i>Emerg. Infect. Dis.</i>
<b>26</b>
) exposes our vulnerability to future outbreaks linked to ventilation in public spaces. We argue that
<i>displacement ventilation</i>
(either mechanical or natural ventilation), where air intakes are at low level and extracts are at high level, is a viable alternative to negative pressure isolation rooms, which are often not available on site in hospital wards and makeshift hospitals. Displacement ventilation produces negative pressure at the occupant level, which draws fresh air from outdoors, and positive pressure near the ceiling, which expels the hot and contaminated air out. We acknowledge that, in both developed and developing countries, many modern large structures lack the openings required for natural ventilation. This lack of openings can be supplemented by installing extract fans. We have also discussed and addressed the issue of the 'lock-up effect'. We provide guidelines for such mechanically assisted, naturally ventilated makeshift hospitals.</AbstractText>
<CopyrightInformation>© 2020 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhagat</LastName>
<ForeName>Rajesh K</ForeName>
<Initials>RK</Initials>
<Identifier Source="ORCID">0000-0002-8928-4534</Identifier>
<AffiliationInfo>
<Affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linden</LastName>
<ForeName>P F</ForeName>
<Initials>PF</Initials>
<Identifier Source="ORCID">0000-0002-8511-2241</Identifier>
<AffiliationInfo>
<Affiliation>Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>R Soc Open Sci</MedlineTA>
<NlmUniqueID>101647528</NlmUniqueID>
<ISSNLinking>2054-5703</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">airborne disease control</Keyword>
<Keyword MajorTopicYN="N">makeshift hospitals</Keyword>
<Keyword MajorTopicYN="N">mechanical ventilation</Keyword>
<Keyword MajorTopicYN="N">natural ventilation</Keyword>
<Keyword MajorTopicYN="N">ventilation</Keyword>
</KeywordList>
<CoiStatement>Neither author has any conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>5</Hour>
<Minute>39</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33047029</ArticleId>
<ArticleId IdType="doi">10.1098/rsos.200680</ArticleId>
<ArticleId IdType="pii">rsos200680</ArticleId>
<ArticleId IdType="pmc">PMC7540764</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2019 Feb 20;9(1):2348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30787335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 06;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32628269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 1999 Dec;9(4):226-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 May;26(5):676-680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32371934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15583121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 24;8(6):e66663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23826109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Feb;4(2):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17326709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 16;382(16):1564-1567</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32182409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2019 Jan 25;19(1):88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30683052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2020 Jul;26(7):1583-1591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32275497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2006 Jan;11(1-2):51-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Apr 11;395(10231):1225-1228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32178769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 2008 Apr;70(3):820-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18278533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2020 Jul;26(7):1628-1631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2009 Dec 6;6 Suppl 6:S727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2010 Feb;20(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 May 29;11(1):2800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32472043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2009 Apr;19(2):122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Bhagat, Rajesh K" sort="Bhagat, Rajesh K" uniqKey="Bhagat R" first="Rajesh K" last="Bhagat">Rajesh K. Bhagat</name>
</region>
<name sortKey="Linden, P F" sort="Linden, P F" uniqKey="Linden P" first="P F" last="Linden">P F Linden</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Wicri/explor/CovidPublicV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Wicri
   |area=    CovidPublicV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33047029
   |texte=   Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33047029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidPublicV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Dec 15 17:23:28 2020. Site generation: Wed Jan 27 15:07:40 2021